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ABSTRACT

Compressive buckling analysis was performed on metal-matrix composite (MMC) plates with central

square holes. The MMC plates have varying aspect ratios and hole sizes and are supported under different

boundary conditions. The finite-element structural analysis method was used to study the effects of plate

boundary conditions, plate aspect ratio, hole size, and the composite stacking sequence on the compres-

sive buckling strengths of the perforated MMC plates. Studies show that by increasing the hole sizes,

compressive buckling strengths of the perforated MMC plates could be considerably increased under cer-

tain boundary conditions and aspect ratios ("anomalous" buckling behavior); and that the plate buckling

mode could be symmetrical or antisymmetrical, depending on the plate boundary conditions, aspect ratio,

and the hole size. For same-sized plates with same-sized holes, the compressive buckling strengths of the

perforated MMC plates with [90/0/0/90] 2 lamination could be as much as 10 percent higher or lower than

those of the [45/-45/-45/45] 2 laminations, depending on the plate boundary conditions, plate

aspect ratios, and the hole size. Clamping the plate edges induces far stronger "anomalous" buckling be-

havior (enhancing compressive buckling strengths at increasing hole sizes) of the perforated MMC plates

than simply supporting the plate edges.

NOMENCLATURE

ANTI

c

ET

E43

GLT

JLOC

l

MMC

(Ny)cr

SPAR

SYM

t

t'

w

x,y

VLT

antisymmetric

length of square hole side, in.

lamina Young's modulus in fiber direction, lb/in 2

lamina Young's modulus in direction transverse to fiber direction, lb/in 2
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width of laminated composite plate, in.
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INTRODUCTION

In aerospace structures, cutouts are commonly found as access ports for mechanical and electrical

systems, or simply to reduce weight. Those structural panels with cutouts are often subjected to compres-
sive loads and could buckle if overloaded. Therefore, the buckling characteristics of those structural pan-

els with cutouts must be fully understood to obtain knowledge for efficient structural design.

For a uniformly compressed solid rectangular plate, the closed-form buckling solutions are easily

obtained because the prebuckling stress field is uniform everywhere in the plates.1 When a hole is intro-

duced into the plate, the buckling strength is influenced by the loss in bending stiffness (in the cutout

region) and by the redistribution of the prebuckling stress field. This stress field is nonuniform because of

the creation of traction-free hole boundary. The buckling analysis then becomes more cumbersome, and

the explicit closed-form buckling solutions are almost unattainable. In the past, therefore, various approx-
imate methods had to be formulated to numerically obtain the buckling solutions for the perforated plates

under uniform compression.

Buckling behavior of flat plates (isotropic and anisotropic) with central cutouts (circular, elliptic, and

square holes) has been studied theoretically and experimentally by many authors. 2-19 Most of these stud-

ies focused on the compressive buckling of simply supported square plates with central holes, and

observed that introducing the cutouts always decreased the buckling strengths of the perforated plates.

This observation seemed to agree with the intuition that introducing a large hole into a compressively

loaded plate could cause a reduction in the buckling strength of the perforated plates because of the loss

of bending strength resulting from the loss of cutout material. Such buckling behavior, however, may not

always be the case for other plate geometry (i.e., aspect ratio, hole size) and boundary conditions. In the-

oretical and experimental studies of buckling behavior of isotropic plates with holes, Ritchie and Rhodes 8

have shown that introducing a hole into a plate did not always reduce the buckling load and, in some in-

stances, could increase its buckling strength--the "anomalous" buckling behavior of the perforated

plates. Nemeth 12' 13 also observed a similar phenomenon and has found that, contrary to the conventional

intuition, under certain sets of geometrical and boundary conditions, the buckling strengths of the square

and rectangular plates with central circular and square holes did increase as the hole size increased. Such

"anomalous" buckling characteristics of the perforated plates are a very useful structural property in the

practical applications and deserve extensive study to fully understand this phenomenon.

Using a well-developed finite-element structural analysis computer program to calculate the

prebuclding stresses and obtain the buckling eigenvalue solutions, the effect of the plate geometry (i.e.,

aspect ratio, hole size, hole shape) and the plate boundary conditions on the mechanical and thermal buck-

ling strengths of square and rectangular isotropic plates containing central circular and square holes was

extensively studied. 2° The study revealed that clamping the plate boundaries strongly affects increases in

the buckling strength for large hole sizes, and that for the same-sized plates and same cutout areas, the

square hole cases exhibited slightly stronger "anomalous" buckling behavior. This buckling study needed

to be extended to the cases of laminated composite plates with cutouts.

This report describes the compressive buckling analysis of laminated metal-matrix composite (MMC)

plates with square holes. A finite-element method was used to study the effects of plate aspect ratio, hole

size, plate boundary conditions, and composite stacking sequence on the compressive buckling strengths

of the perforated MMC plates. This report presents the results of such buckling analysis, and discusses in

detail the "anomalous" buckling behavior of the perforated MMC plates.



DESCRIPTION OF PROBLEM

Geometry of the MMC plates with central cutouts is described below. The four cases of boundary

conditions used in the finite-element analysis are also described.

Geometry

Figure 1 shows the geometry of MMC plates (length, l; width, w; and thickness, t) containing a central

square hole with side length c. The perforated MMC plates have [90/0/0/90] 2 and [45/-45/-45/45]2 lam-

inations with the fiber orientation angles measured from the x axis.

The square-hole geometry is chosen instead of circular-hole because it is easier to generate a family of

finite-element models of different aspect ratios and different hole sizes without distorting the finite-

element mesh (for the circular holes, each time the hole size is changed, a new finite-element mesh must

be generated to maintain proper element aspect ratios). The square-hole geometry is also chosen because,

for the same-sized plates with the same cutout areas, the square-hole cases exhibited slightly stronger

"anomalous" buckling behavior than the circular-hole cases. 20

Table 1 shows the dimensions of a family of perforated MMC plates analyzed. Notice that all the

plates have the same width (w = 20 in.) and the same thickness (t = 0.064 in.).

Table 1. Dimensions of perforated MMC plates analyzed.

w, in. t, in. l/w c/w

20 0.064 1.0 0-0.7

20 0.064 1.5 0 - 0.7

20 0.064 2.0 0-0.7

where the range "c/w = 0 - 0.7" implies c/w = 0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45,

0.50, 0.55, 0.60, 0.65, 0.70.

For a given plate aspect ratio, the 15 hole-size cases (table 1) will provide 15 data points for plotting

each buckling curve in the plots showing (Nv)cr as a function of c/w. However, if the buckling curve has

any sharp bends in certain regions, additional data points (for c/w values not listed in table 1) are generat-

ed to define those sharp-bend regions more precisely.

Boundary Conditions

The perforated MMC plates are subjected to uniform compression in the y direction (fig. 2). The four

edges of the perforated plates are either simply supported or clamped. The two axes of symmetry (i.e., x

and y axes) of the plate have no in-plane motions. The lower and the upper horizontal edges of the plate

are free to move in the loading direction (y direction). The two unloaded edges are either constrained from

the transverse in-plane motion (defined as fixed case) (fig. 2(a)), or unconstrained from the transverse



inplanemotion(definedasfreecase)(fig. 2(b)).Thefourcasesof boundaryconditionsconsideredin the
buckling analysisareasfollows:

• 4S-fixed:fouredgessimply supported;thetwo sideedgescanslidefreelyalongthelubricatedfixed
guides(fig. 3(a)).

• 4S-free: four edgessimply supported;the two sideedgescanslide freely along the lubricated
guides,whichcanhavefree in-planetransversemotions(fig. 3(b)).

• 4C-fixed:four edgesclamped;thetwo sideedgescanslidefreelyalongthelubricatedfixedclamp-
ing guides(fig. 3(c)).

• 4C-free: four edgesclamped;the two sideedgescan slidefreely along the lubricatedclamping
guides,which canhavefree in-planetransversemotions(fig. 3(d)).

Figure4 showsthedegreesof freedomconstrainedon theaxesof symmetryandat theboundariesof the
platesfor theabovefour casesof boundaryconditions.

FINITE-ELEMENT ANALYSIS

This section describes the finite-element modeling of the perforated MMC plates. The composite ma-

terial and geometrical properties used in the finite-element linear elastic buckling analysis are also given.

Finite-Element Modeling

In the finite-element linear elastic buckling analysis, the Structural Performance and Resizing (SPAR)

finite-element computer program 21 was used to calculate symmetrical and antisymmetrical buckling

loads and to plot the buckling mode shapes. Because of symmetry with respect to the x and y axes (fig. 1),

only the first quadrant of the perforated plates was modeled with quadrilateral combined membrane and

bending elements (E43 elements). The lamination section properties for E43 elements were generated by

combining lamina material and geometrical properties (i.e., lamina fiber orientation angle, lamina thick-

ness, and lamina offset distance from the middle plane of the laminated plate). Figure 5 shows a

typical quarter-panel finite-element model generated for a MMC plate of aspect ratio I/w = 1.5 with

square-hole size c/w = 0.2.

For each plate aspect ratio, a basic finite-element model for the unperforated plate (c/w = 0) was gen-
erated first. The finite-element models with different hole sizes were then generated from this basic model

by simply removing the proper number of E43 elements from the plate central region to create the desired

hole cavities. Also, to increase aspect ratios of the models, additional E43 elements were attached to the

square plate models. Table 2 shows the sizes of the basic finite-element models from which a family of

perturbed models was generated.

Table 2. Sizes of the basic finite-element models (c/w = 0).

Uw JLOC E43

1.0 441 400

1.5 651 600

2.0 861 800



Material Properties

Table 3 shows the lamina material and geometrical properties of a typical titanium matrix MMC used

as input data for the E43 elements with [901010/90] 2 and [45/-45/-45/45] 2 laminations.

Table 3. Material and geometrial properties of MMC lamina.

E L, lb/in 2 E T, lb/in 2 GLT, lb/in 2 VLT t', in.

27.7200 × 106 18.0900 × 106 8.1500 × 106 0.3000 0.0080

RESULTS

The results of the finite-element buckling analysis of the laminated MMC plates with central square

holes are presented in the following subsections. Solution accuracy, fixed cases, and free cases
are discussed.

Solution Accuracy

To check the accuracy of the finite-element buckling solutions, square plates with [90/0/0/90] 2

lamination subject to a 4S-free boundary condition were considered. The element density of the original

square model (400 elements; c/w = 0) (table 2) was increased to 900 elements (c/w = 0) to find out how

much the solutions will change if the element density is increased. Table 4 shows the resulting finite-

element buckling solutions for the two element density cases. The numerical differences of the two sets of

buckling solutions are highlighted with double underlines.

Table 4. Comparison of buckling loads (N_,)cr calculated using finite-element models with different ele-

ment densities; [90/0/0/90]2 lamination.

(Nv)cr, lb/in

Element

density, c/w = 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(c/w = O)

400 49.2285 46.9577 42.8246 39.6540 37.6857 36.4454 35.5917 35.1734
=

900 49.2286 46.9455 42.8393 39.6854 37.7255 36.4901 35.6396 35.2243

difference, 0.0002 0.0260 0.0343 0.0791 0.1055 0.1255 0.1344 0.1445
percent

Table 4 shows that the buckling solutions improved negligibly although the element density was

increased by 2.25 times. The solution difference increases with increased hole size; however, the differ-

ence is still infinitesimal. This close correlation of the two sets of solutions provides confidence that
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the finite-element buckling solutions calculatedusing the original element densities (table 2) are
quite accurate.

Fixed Cases

Figures 6 to 11 respectively show the symmetrical and antisymmetrical buckling loads (N_,)cr plotted

as functions of hole size c/w (figs. 6, 8, and 10), and the associated buckling mode shapes (figs. 7, 9, and

11) for the perforated MMC plates of different laminations subject to 4S-fixed and 4C-fixed boundary

conditions. The buckling strengths of [90/0/0/90] 2 and [45/-45/-45/4512 laminations are relatively close.

The overall buckling behavior of the perforated MMC plates is very similar to that of the corresponding

monolithic isotropic plates previously reported. 2°

The 4S-Fixed Cases

For the 4S-fixed cases, the antisymmetrical buckling curves always lie above the symmetrical

buckling curves for all the plate aspect ratios and hole sizes (figs. 6, 8, and 10). The lowest buckling mode

shapes, therefore, are always symmetrical (figs. 7(a), 9(a), and l l(a)). The buckling strengths of

[90/0/0/90]2 and [45/-45/-45/45]2 laminations are very close for aspect ratios I/w = 1 (fig. 6) and

I/w = 1.5 (fig. 8). At aspect ratio I/w = 2 (fig. 10), the [90/0/0/90] 2 lamination exhibits slightly higher

buckling strengths (a maximum of 6 percent higher) (fig. 10) than the [45/-45/-45/45] 2 lamination.

For the 4S-fixed cases, the lowest buckling loads (Ny)c r (symmetrical buckling) for the square plates

(fig. 6) monotonically decrease slightly from the solid plate values as the hole sizes increase, and never

exhibit "anomalous" buckling behavior. For the rectangular plates (figs. 9 and 11), the symmetrical buck-

ling loads (Ny)cr decrease slightly as the hole size grows, reaching minimum values at the hole sizes
c/w = 0.35 to 0.40. Then, at hole sizes greater than c/w -- 0.40, the buckling loads (Nv)cr increase slowly

as the hole sizes become larger.

The 4C-Fixed Cases

For the 4C-fixed cases, strong "anomalous" buckling behavior resulted for all plate aspect ratios

(figs. 6, 8, and 10). The symmetrical and antisymmetrical buckling curves entangle each other (or mutu-

ally intersect), causing the buckling curves for the lowest (Ny)cr values to be composite curves consisting

of symmetrical and antisymmetrical buckling curves segments. Thus, the buckling mode shapes can be ei-

ther symmetrical or antisymmetrical (figs. 7(b), 9(b), and 1 l(b)), depending on the hole sizes and the plate

aspect ratios. For the 4C-fixed cases, the [90/0/0/90] 2 laminations have slightly higher buckling strengths

(a maximum of 5 percent higher) (fig. 8) than the [45/-45/-45/45] 2 laminations for all the plate aspect

ratios and most hole sizes. For larger holes, the secondary (or local) buckling modes start to appear at the

hole boundaries (figs. 7(b), 9(b), and 1 l(b)); therefore, the plate buckling mode shapes exhibit the combi-

nations of both global and local buckling modes.

For the square plate (fig. 6) of the 4C-fixed case, the lowest buckling loads (g_,)c r for both types of

laminations decrease from their respective solid plate (c/w = 0) values as the hole starts to initiate and

grows in size, reach their respective minimum values near the hole sizes c/w = 0.175, and then continue to

increase and alternatively change buckling mode at hole sizes larger than 0.175. At hole sizes greater than
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c/w = 0.3, the buckling loads (Ny)c r for both laminations exceed the values of corresponding solid square
plates (c/w = 0).

For the rectangular plates (figs. 8 and 10) of the 4C-fixed cases, the lowest buckling loads (Ny)cr
increase initially as the holes start to grow in size, then change mode and reach their respective minimum

values at approximately c/w = 0.15. At hole sizes greater than c/w = 0.30, the (Nv)cr values exceed their

respective values of the solid rectangular plates (c/w = 0). Rectangular plates wiih aspect ratio//w = 1.5

(fig. 8) exhibit the strongest "anomalous" buckling behavior.

Free Cases

Figures 12 to 17 respectively show the changes of the compressive buckling loads (Ny)c r with the hole
size c/w (figs. 12, 14, and 16), and the associated buckling mode shapes (figs. 13, 15, and 17) of the lam-

inated MMC plates subject to 4S-free and 4C-free boundary conditions. Again, the buckling strengths of

[90/0/0/90] 2 and [45/-45/-45/45] 2 laminations are quite close. The overall buckling behavior of the

laminated MMC plates with square holes resemble the corresponding monolithic isotropic cases

reported previously. 2°

The 4S-Free Cases

For the 4S-free cases (figs. 12, 14, and 16), the [45/-45/-45/45] 2 lamination exhibits slightly higher

buckling strengths (symmetrical) (a maximum 10 percent higher) (fig. 12) than the [90/0/0/90] 2 lamina-

tion for all plate aspect ratios. For the 4S-free square plate cases (fig. 12), the symmetrical and antisym-

metrical buckling curves square never intersect, and the buckling modes are always symmetrical. The

buckling loads (N_,)cr decrease monotonically as the hole sizes increase (no "anomalous" buckling behav-
ior). For the rectangular plates (figs. 14 and 16) under 4S-free conditions, relatively weak "anomalous"

buckling behavior appeared, and the symmetrical and antisymmetrical buckling curves intersect each oth-

er at certain hole sizes, causing the buckling mode shapes to change alternately between symmetrical and

antisymmetrical modes as the hole sizes change.

The 4C-Free Cases

For the 4C-free cases (figs. 12, 14, and 16), the symmetrical and antisymmetrical buckling curves

for all plate aspect ratios entangle each other, causing the actual buckling curves to be

symmetrical/antisymmetrical composite curves. The buckling strengths of [90/0/0/90] 2 lamination are

slightly higher or lower (a maximum of 3 percent difference) (figs. 12 and 14) than the [45/-45/-45/45] 2

lamination, depending on the hole sizes.

For the square plate (fig. 12), the lowest buckling loads (Nv)cr for the 4C-free cases decrease (with

slight waves) as hole size decreases, never increase with the fiole size, and do not show "anomalous"

buckling behavior. For the rectangular plates (figs. 14 and 16), the buckling loads (Nv)cr for 4C-free cases

increase at large hole sizes, showing strong "anomalous" buckling behavior. For the 4C-free cases, the

buckling mode shapes of the MMC plates with large holes (figs. 13, 15, and 17) show complex buckling

modes consisting of global and pronounced local buckling at the hole boundaries.



DISCUSSION

The buckling behavior of MMC plates with central square holes, like the corresponding monolithic

isotropic cases, 2° exhibit "anomalous" buckling behavior under certain boundary conditions (especially

cases with clamped edges), hole sizes, and plate aspect ratios. That is, the compressive buckling strengths

of the perforated MMC plates can increase rather than decrease as the hole sizes grow larger. As the hole

sizes increase, the plates lose more material and consequently lose more bending stiffness. The buckling

strengths are therefore expected to decrease as the hole sizes increase. This conventional notion turned out

not to be always true, as shown in this report. Such "anomalous" buckling behavior of the perforated

plates could be explained as follows.

When the hole size becomes considerably larger in relation to the plate width, most of the

compressive load is carried by the two narrow side strips of material along the plate load-free boundaries.

A stronger plate boundary condition (i.e., clamped rather than simply supported boundaries) increases the

buckling strength, but the higher stress concentration could reduce the buckling strength. Thus, whichever

effect is dominant will determine the increase or decrease of the buckling loads of the perforated MMC

plates at increasing hole sizes.

This "anomalous" buckling characteristics of the perforated MMC plates has very useful

applications in the aerospace compression panel design. By cutting central holes of proper sizes in the

compression panels for weight reduction, the compressive buckling strengths of the panels can simulta-

neously be enhanced.

CONCLUDING REMARKS

Finite-element compressive buckling analysis was performed on metal-matrix composite (MMC)

plates containing central square holes. The effects of plate aspect ratio, hole size, plate boundary condi-

tions, and the composite stacking sequence on the compressive buckling strengths and buckling mode

shapes were studied in detail. The key findings of the analysis are as follows:

• Increasing hole size does not necessarily reduce the compressive buckling strengths of the perfo-

rated MMC plates. For certain plate aspect ratios and plate boundary conditions, the compressive

buckling strengths could increase at large hole sizes ("anomalous" buckling behavior).

• The buckling mode shapes of the perforated MMC plates can be symmetrical or antisymmetricat

depending on the plate aspect ratio, hole size, and plate boundary condition.

• The buckling strengths of perforated MMC plates with [90/0/0/90] 2 lamination could be higher or

lower, by as much as 10 percent, than those with [45/-45/-45/45] 2 lamination, depending on the

plate aspect ratio, plate boundary conditions, and hole size.

• Clamping the edges strongly enhances the "anomalous" buckling behavior (i.e., enhancing com-

pressive buckling strengths at increasing hole sizes) of the perforated MMC plates compared with

simply supporting the edges.

Dryden Flight Research Center

National Aeronautics and Space Administration

Edwards, California, December 16, 1997
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Figure 1. Metal-matrix composite plates with central cutouts.
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Figure 2. Fixed and free boundary conditions for two vertical edges; simply supported or clamped.
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Figure 3. Four types of boundary conditions for the vertical edges.
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Figure 4. Constrained degrees of freedom for the four cases of plate boundary conditions; quarter panel;

degree-of-freedom 6 is constrained for all cases.
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Figure 5. Quarter-panel finite-element model for rectangular MMC plate with square hole; l/w = 1.5;

c/w = 0.2.
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Figure 7. Buckled shapes of square plates with square holes under compression;//w = 1.0; fixed edges.
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Figure 9. Buckled shapes of rectangular plates with square holes under compression; I/w = 1.5;

fixed edges.
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Figure 10. Compressive buckling loads as functions of hole size; l/w = 2.0; fixed edges.
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Figure l l. Buckled shapes of rectangular plates with square holes under compression; l/w = 2.0;

fixed edges.
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Figure 13. Buckled shapes of square plates with square holes under compression; l/w = 1.0; free edges.
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Figure 14. Compressive buckling loads as functions of hole size; I/w = 1.5; free edges.
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Buckled shapes of rectangular plates with square holes under compression; l/w = 1.5;
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Figure 16. Compressive buckling loads as functions of hole size; l/w = 2.0; free edges.
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Figure 17. Buckled shapes of rectangular plates with square holes under compression; l/w = 2.0;
free edges.
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